jjl@nju.edu.cn; lywang@nju.edu.cn.

Received August 3, 2011

Many natural products and biologically active compounds containing imidazo[2,1-b]thiazole moieties have been discovered and synthesized so $far¹$. As some typical examples, anthelmintics tetramisole (i) , thieno[3,2-d] pyrimidinone (ii),³ 5,6-diarylimidazo[2,1-b][1,3]thiazoles (iii),⁴ C-2 aryl-substituted pilicides (iv),⁵ and ¹¹C-labeled imidazo[2,1-b]benzothiazoles (v) ⁶ all showed effective

† Nanjing University.

are also reported.

(4) Scribner, A.; Meitz, S.; Fisher, M.; Wyvratt, M.; Leavitt, P.; Liberator, P.; Gurnett, A.; Brown, C.; Mathew, J.; Thompson, D.;

Schmatz, D.; Biftu, T. Bioorg. Med. Chem. Lett. 2008, 18, 5263. (5) Chorell, E.; Pinkner, J. S.; Phan, G.; Edvinsson, S.; Buelens, F.; Remaut, H.; Waksman, G.; Hultgren, S. J.; Almqvist, F. J. Med. Chem.

biological and medicinal activity (Figure 1). Milne et al.⁷ described the identification and characterization of a molecule (vi) bearing imidazo[2,1-b]thiazole as an activator of SIRT1, which was structurally unrelated to, and 1000-fold more potent, than resveratrol. And it can bind to the SIRT1 enzyme-peptide substrate complex at an allosteric site amino terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates.

Imidazo[2,1-b]thiazoles designed with the desired substituents in appropriate positions were often specific (Figure 1). Current strategies for preparing imidazo- [2,1-b]thiazole derivatives are focused on the construction of the fused ring with the desired aryl substituents or hopeful heterocycles at oriented position in advance.⁸ To the best of our knowledge, there has been no reported example of direct arylation of the imidazo[2,1-b] thiazole core.

Ligand-Free Copper-Catalyzed Regioselective C-2 Arylation of Imidazo[2,1-b]thiazoles

Guoli Huang,† Hongsheng Sun,† Xiaojie Qiu,†,‡ Can Jin,† Chen Lin,† Yingzhong Shen,‡ Juli Jiang,*,† and Leyong Wang*,†

Key Laboratory of Mesoscopic Chemistry of MOE, Institute of Chemical Biology and Drug Innovation, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China, and College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

ABSTRACT

An effective, regioselective C-2 arylation of imidazo[2,1-b]thiazoles catalyzed by Cu(I) has been developed. This arylation proceeded smoothly without promotion of the ligands, and various functional (22 samples) groups were well tolerated. Preliminary mechanistic studies of this arylation

ORGANIC **LETTERS** 2011 Vol. 13, No. 19 5224–5227

[‡] Nanjing University of Aeronautics and Astronautics.

^{(1) (}a) Budriesi, R.; Ioan, P.; Leoni, A.; Pedemonte, N.; Locatelli, A.; Micucci, M.; Chiarini, A.; Galietta, L. J. V. J. Med. Chem. 2011, 54, 3885. (b) Guzeldemirci, N. U.; Kucukbasmaci, O. Eur. J. Med. Chem. 2010, 45, 63. (c) Metaye, T.; Millet, C.; Kraimps, J. L.; Saunier, B.; Barbier, J.; Begon, F. Biochem. Pharmacol. 1992, 43, 1507.

⁽²⁾ Raeymaekers, A. H. M.; Allewijn, F. T. N.; J., V.; Demoen, P. J. A.; VanOffenwert, T. T. T.; Janssen, P. A. J. J. Med. Chem. 1966, 9, 545.

⁽³⁾ Carpenter, A. J.; Cooper, J. P.; Handlon, A. L.; Hertzog, D. L.; Hyman, C. E.; Guo, Y. C.; Speake, J. D.; Witty, D. R. WO03033476, 2003.

²⁰¹⁰, 53, 5690.

⁽⁶⁾ Yousefi, B. H.; Manook, A.; Drzezga, A.; Reutern, B. V.; Schwaiger, M.; Wester, H. J.; Henriksen, G. J. Med. Chem. 2011, 54, 949.

⁽⁷⁾ Milne, J. C.; Lambert, P. D.; Schenk, S.; Carney, D. P.; Smith, J. J.; Gagne, D. J.; Jin, L.; Boss, O.; Perni, R. B.; Vu, C. B.; Bemis, J. E.; Xie, R.; Disch, J. S.; Ng, P. Y.; Nunes, J. J.; Lynch, A. V.; Yang, H. Y.; Galonek, H.; Israelian, K.; Choy, W.; Iffland, A.; Lavu, S.; Medvedik, O.; Sinclair, D. A.; Olefsky, J. M.; Jirousek, M. R.; Elliott, P. J.; Westphal, C. H. Nature 2007, 450, 712.

Figure 1. Imidazo[2,1-b]thiazoles with biological and medicinal activity.

The concept of direct arylation via $C-H$ bond cleavage has received substantial attention over the past few years.⁵ Expensive metal-catalyzed sp^2C-H bond arylations such as palladium,¹⁰ rhodium,¹¹ or ruthenium¹² have

(9) (a) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. (b) Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173. (c) Daugulis, O.; Do, H. Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074. (d) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed. 2009, 48, 9792. (e) Bellina, F.; Rossi, R. Chem. Rev. 2010, 110, 3850.

(10) (a) Deprez, N. R.; Kalyani, D.; Krause, A.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 4972. (b) Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172. (c) Yu, J. Q.; Giri, R.; Maugel, N.; Li, J. J.; Wang, D. H.; Breazzano, S. P.; Saunders, L. B. J. Am. Chem. Soc. 2007, 129, 3510. (d) Stuart, D. R.; Villemure, E.; Fagnou, K. J. Am. Chem. Soc. 2007, 129, 12072. (e) Li, B. H.; Tian, S. L.; Fang, Z.; Shi, Z. H. Angew. Chem., Int. Ed. 2008, 47, 1115. (f) Lebrasseur, N.; Larrosa, I. J. Am. Chem. Soc. 2008, 130, 2926. (g) Yu, J. Q.; Wang, D. H.; Mei, T. S. J. Am. Chem. Soc. 2008, 130, 17676. (h) Yanagisawa, S.; Ueda, K.; Sekizawa, H.; Itami, K. J. Am. Chem. Soc. 2009, 131, 14622. (i) Zhao, D. B.; Wang, W. D.; Lian, S.; Yang, F.; Lan, J. B.; You, J. S. Chem. - Eur. J. 2009, 15, 1337. (j) Roy, D.; Mom, S.; Beauperin, M.; Doucet, H.; Hierso, J. C. Angew. Chem., Int. Ed. 2010, 49, 6650. (k) Shibahara, F.; Yamaguchi, E.; Murai, T. Chem. Commun. 2010, 46, 2471. (l) Ohnmacht, S. A.; Culshaw, A. J.; Greaney, M. F. Org. Lett. 2010, 12, 224. (m) Tamba, S.; Okubo, Y.; Tanaka, S.; Monguchi, D.; Mori, A. J. Org. Chem. 2010, 75, 6998. (n) Kirchberg, S.; Tani, S.; Ueda, K.; Yamaguchi, J.; Studer, A.; Itami, K. Angew. Chem., Int. Ed. 2011, 50, 2387. (o) Ioannidou, H. A.; Koutentis, P. A. Org. Lett. 2011, 13, 1510.

(11) (a) Lewis, J. C.; Wiedemann, S. H.; Bergman, R. G.; Ellman, J. A. Org. Lett. 2004, 6, 35. (b) Wang, X.; Lane, B. S.; Sames, D. J. Am. Chem. Soc. 2005, 127, 4996. (c) Yanagisawa, S.; Sudo, T.; Noyori, R.; Itami, K. J. Am. Chem. Soc. 2006, 128, 11748. (d) Ackermann, L.; Born, R.; Álvarez-Bercedo, P. Angew. Chem., Int. Ed. 2007, 46, 6364. (e) Lewis, J. C.; Berman, A. M.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 2493. (f) Berman, A. M.; Lewis, J. C.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 14926.

Table 1. Pd-Catalyzed Arylation of Imidazo $[2,1-b]$ thiazole^a

 a Reaction was performed with 1a (0.5 mmol) and 2a (1.5 mmol) in 1 mL of solvent. ^b Unless specified, the yield was estimated by ¹H NMR. ^c Isolated yield of **3a**. ^{*d*} See ref 10i. ^{*e*} See ref 16. ^{*f*} See ref 21. See ref 16. See ref 21.

undergone explosive growth in the past few years. Lessexpensive copper, 13 iron, 14 and nickel¹⁵ compounds have also shown to be highly active in catalytic direct arylations in recent years and have great potential for future development.^{9c,d} Although metal-catalyzed arylations on various heterocyclic systems such as indolizines,¹⁶ imidazo[1,5-*a*]pyrazines,¹⁷ xanthines,¹⁸ and thiazoles¹⁹ exist, no direct, regioselective arylation of the imidazo[2,1 b]thiazole core have been developed so far.

3-Methyl-6-phenylimidazo[2,1-b]thiazole (1a) was selected as a substrate to investigate the possibility of arylation. In this substrate (1a), the activity of the C_2-H bond was clearly different from that of the C_5 -H bond, deduced from their different chemical shifts (6.39 ppm for C_2-H and 7.61 ppm for C_5 -H).²⁰ We initially tested direct arylation of 1a using typical Pd-catalyzed conditions optimized in the literature.^{10i,16,21} As shown in Table 1, these approachs were largely unsuccessful. Both 3a, C-2 arylated product, and 3a', C-5 arylated product, were obtained in poor yields,²² and byproduct biphenyl was also found in the reaction $(5% yield).$

(18) Malakar, C. C.; Schmidt, D.; Conrad, J.; Beifuss, U. Org. Lett. 2011, 13, 1378.

(19) (a) Masui, K.; Mori, A.; Okano, K.; Takamura, K.; Kinoshita, M.; Ikeda, T. Org. Lett. 2004, 6, 2011. (b) Turner, G. L.; Morris, J. A.; Greaney, M. F. Angew. Chem., Int. Ed. 2007, 46, 7996.

(20) See the Supporting Information for details.

(21) Koubachi, J.; El Kazzouli, S.; Berteina-Raboin, S.; Mouaddib, A.; Guillaumet, G. Synlett 2006, 3237.

(22) The arylation product (3a for C-2 position and $3a'$ for C-5 position) was established by ¹H NMR; see the Supporting Information for details.

^{(8) (}a) Al-Tel, T. H.; Al-Qawasmeh, R. A.; Voelter, W. Eur. J. Org. Chem. 2010, 5586. (b) Fidanze, S. D.; Erickson, S. A.; Wang, G. T.; Mantei, R.; Clark, R. F.; Sorensen, B. K.; Bamaung, N. Y.; Kovar, P.; Johnson, E. F.; Swinger, K. K.; Stewart, K. D.; Zhang, Q.; Tucker, L. A.; Pappano, W. N.; Wilsbacher, J. L.; Wang, J. Y.; Sheppard, G. S.; Bell, R. L.; Davidsen, S. K.; Hubbard, R. D. Bioorg. Med. Chem. Lett. 2010, 20, 2452. (c) Xu, H.; Zhang, Y.; Huang, J. Q.; Chen, W. Z. Org. Lett. 2010, 12, 3704. (d) Guchhait, S. K.; Madaan, C.; Thakkar, B. S. Synthesis 2009, 3293.

^{(12) (}a) Ackermann, L.; Vicente, R.; Althammer, A. Org. Lett. 2008, 10, 2299. (b) Arockiam, P.; Poirier, V.; Fischmeister, C.; Bruneau, C.; Dixneuf, P. H. Green Chem. 2009, 11, 1871. (c) Ackermann, L.; Vicente, R.; Potukuchi, H. K.; Pirovano, V. Org. Lett. 2010, 12, 5032. (d)
Ackermann, L.; Vicente, R. Top. Curr. Chem. 2010, 292, 211. (e) Štefane, B.; Fabris, J.; Pozgan, F. Eur. J. Org. Chem. 2011, 3474.

^{(13) (}a) Do, H. Q.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 12404. (b) Do, H. Q.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 1128. (c) Phipps, R. J.; Grimster, N. P.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 8172. (d) Ackermann, L.; Potukuchi, H. K.; Landsberg, D.; Vicente, R. Org. Lett. 2008, 10, 3081. (e) Liebeskind, L. S.; Liu, S. J. Am. Chem. Soc. 2008, 130, 6918.

^{(14) (}a) Wen, J.; Zhang, J.; Chen, S. Y.; Li, J.; Yu, X. Q. Angew. Chem., Int. Ed. 2008, 47, 8897. (b) Yoshikai, N.; Matsumoto, A.; Norinder, J.; Nakamura, E. Angew. Chem., Int. Ed. 2009, 48, 2925. (c) Vallee, F.; Mousseau, J. J.; Charette, A. B. J. Am. Chem. Soc. 2010, 132, 1514. (d) Wen, J.; Qin, S.; Ma, L. F.; Dong, L. A.; Zhang, J.; Liu, S. S.; Duan, Y. S.; Chen, S. Y.; Hu, C. W.; Yu, X. Q. Org. Lett. 2010, 12, 2694.

^{(15) (}a) Canivet, J.; Yamaguchi, J.; Ban, I.; Itami, K. Org. Lett. 2009, 11, 1733. (b) Hachiya, H.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2009, 11, 1737. (c) Hachiya, H.; Hirano, K.; Satoh, T.; Miura,M. Angew. Chem., Int. Ed. 2010, 49, 2202.

⁽¹⁶⁾ Park, C. H.; Ryabova, V.; Seregin, I. V.; Sromek, A. W.; Gevorgyan, V. Org. Lett. 2004, 6, 1159.

⁽¹⁷⁾ Wang, J. X.; McCubbin, J. A.; Jin, M. Z.; Laufer, R. S.; Mao, Y. Y.; Crew, A. P.; Mulvihill, M. J.; Snieckus, V. Org. Lett. 2008, 10, 2923.

Table 2. Cu-Catalyzed C-2 Arylation of Imidazo[2,1-b]thiazole^a

^aThe reaction was performed with $1a(0.5 \text{ mmol})$ and $2a(1.5 \text{ mmol})$ in 1 mL of solvent at 140 °C for 18 h. b Substrate concentration = 0.5 M. c Unless specified, the yield was estimated by ¹H NMR. ^d Isolated yield.

Copper, as the first transition metal used to promote C-H bond functionalization, appeared to be underutilized as a catalyst for C-H bond arylation.²³ The successful Cu-catalyzed arylation by Daugulis^{13a,b} inspired us to attempt the possible direct arylation of imidazo[2,1-b] thiazole by Cu catalyst. The initial reaction was performed with 1a and iodobenzene 2a as reactants, t -BuOLi as a base, and DMF $-x$ ylene mixture as a solvent (Table 2). To our surprise, four Cu(I) salts showed good yields uniformly (entries $1-4$). More promisingly, only regioselectively C-2-arylated imidazo[2,1-b] thiazole product was obtained, and no side product biphenyl was found. Unambiguous confirmation of the structure of a representative C-2-arylated product was obtained in the form of the X-ray structure of compound $3a^{20}$.

As shown in Table 2, Cu(II) salts, CuCl₂, CuCl₂ \cdot 2H₂O, $Cu(OAc)₂·2H₂O$, $Cu(OTf)₂$, and $Cu(acac)₂$, were also tested in our studies and found to be effective but a little less active than $Cu(I)$ (entries 5–9). Subsequently, we explored the effects of the solvent, base, and Cu-catalyst loading in the arylation. Equally good results were obtained in DMF or DMA-xylene mixtures, and DMA afforded the highest yields (94%, entry 11). Reducing the catalyst loading from 20 to 10 and 5 mol % lowered the yields of product from 94% to 86% and 73%, respectively. In the absence of the Cu catalyst, no arylated product was found.With these partially optimized arylation conditions, the bases were investigated, and a variety of weak inorganic bases $(K_3PO_4, Cs_2CO_3,$ and K_2CO_3) were all

Table 3. Scope of Cu-Catalyzed Arylation of Imidazo[2,1-b] thiazole a

"The reaction was performed with 1 (0.5 mmol), 2 (1.5 mmol), t-BuOLi (2.0 equiv), and CuCl (20 mol %) in 1 mL of DMA at 140 $^{\circ}$ C for 18 h. $\frac{b}{b}$ Isolated yield after column chromatography of the crude. c Determination from 1 H NMR.

unsuccessful. We then tested other alkoxide bases, t -BuOK and t-BuONa, and yields of 24% and 59% were obtained, respectively. No arylated product was found without bases. Furthermore, PhBr or PhCl, instead of PhI, only gave traces of product under optimized conditions. Optimization experiments indicated that the best result for C-2 arylation of imidazo[2,1-b]thiazoles was obtained in the presence of CuCl (20 mol %), aryl iodides (3.0 equiv), and t -BuOLi (2.0 equiv) in DMA at 140 °C.

With optimized conditions in hand, the scope with respect to aryl iodides and imidazo[2,1-b]thiazoles was investigated (Table 3). A variety of functional groups on the substituents of the aryl iodides were well-tolerated. The electron-deficient and electron-rich aryliodides were reactive in moderate to excellent yields (entries $1-8$). Electronrich aryl iodides gave a slightly higher yield than electrondeficient ones under the optimized conditions (entries 2, 3 vs entries 4, 5). Substantial steric hindrance was tolerated on the aryl iodides at the para-, meta-, and ortho-positions (entries 3 vs 6 vs 7) and afforded good results. Most

^{(23) (}a) Steinkopf, W.; Leitsmann, R.; Hofmann, K. H. Liebigs Ann. Chem. 1941, 546, 180. (b) Nilsson, M. Tetrahedron Lett. 1966, 7, 679. (c) Björklund, C.; Nilsson, M. Acta Chem. Scand. 1968, 22, 2338. (d) Ljusberg, H.; Wahren, R. Acta Chem. Scand. 1973, 27, 2717.

⁽²⁴⁾ Lindley, J. Tetrahedron 1984, 40, 1433.

^{(25) (}a) Do, H. O.; Khan, R. M. K.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 15185. (b) Do, H. Q.; Daugulis, O. Org. Lett. 2009, 11, 421.

remarkably, the sterically hindered 1-naphthyl iodide also gave the desired regioselective C-2 arylation product in excellent yield $(>95\%,$ entries 8, 15, and 22). It should be noted that the substrates with aromatic groups at C-5 and C-3 gave better yields than the aliphatic groups (entries 1 vs 9 vs 16). Presumably, electronic effects rather than steric effects played a more important role in this reaction.

Naturally, we were interested in elucidating the mechanism for this arylation reaction and carried out preliminary mechanistic investigations of the coupling process. (i) Cu-assisted benzyne-type mechanisms, 24 (ii) deprotonation-metalation mechanisms, and (iii) typical $F-C$ alkylations were considered. C_6D_5I was applied to the optimized conditions for mechanistic consideration (Scheme 1). Only compound 5, instead of 4, was found in the reaction, and no $H-D$ exchange was observed. This result could not support the assumption that the reaction proceeded via a copper-assisted benzyne-type mechanism. And, according to the result that no desired arylated product was found without bases, the possibility of typical $F-C$ alkylation was excluded because in typical $F-C$ alkylation a Lewis acid is always necessary as catalyst.

Detailed mechanistic insight into this catalytic system led to the proposition that the addition between Cu(I) and heterocycle gave the unstable cationic intermediates 6, then C_2 –H proton was removed by t-BuOLi (Scheme 2) to give the organocopper species $(7)^{25}$ Reaction of 7 with aryl iodide gave a possilble cu(III)-aryl species (8) , and the desired arylation product was obtained by a reductive elimination from 8. 8 was proposed to be involved as a key intermediate. Imidazo[2,1-b]thiazole contains both a π -deficient ring and a π -excessive ring. 8 formed at C-2 of the π -excessive thiazole ring should be more stable than the copper(III)-aryl species formed at C-5 of the π -deficient imidazole ring. Moreover, the possibility of neighbored-S atom strong concerted coordination made 8 more stable. Futhermore, $cu(III)$ —aryl species from electron-rich aryl iodides were more stable than electron-deficient ones, and as a result, electron-rich aryl iodides gave higher yields than electron-deficient aryl iodide as shown in Table 3. In addition, the better results provided by the aromatic

Scheme 1. Mechanistic Considerations Scheme 2. Possible Mechanism for Cu-Catalyzed Arylation of Imidazo[2,1-b]thiazoles

substrate compared to the aliphatic substrate can also be foreseen.

While monitoring the Cu(II)-catalyzed reaction, we observed that the purple reaction solution turned into a brown solution, just as the reaction with Cu(I) salt. This color change phenomenon can be understood on the basis of the catalytic cycle in Scheme 2. Cu(II) was initially transformed to $Cu(I)$ and entered the cycle^{13c} to accumulate the reaction. It was also understood that Cu(II) showed somewhat low reactivity relative to $Cu(I).$

In summary, an efficient, ligandless copper-catalyzed method for the regioselective arylation of imidazo[2,1-b] thiazole was first developed. This protocol provided a new avenue for developing $C-C$ bond-forming reactions of fused heteroarene. The best result was obtained with copper(I) catalyst, aryl iodide coupling partner, DMA solvent, and *t*-BuOLi base. Mechanistic investigations of the arylation process were also described. Further research will be focused on alkylation of imidazo[2,1-b]thiazole with aliphatic iodide in the presence of $Cu(I)$.

Acknowledgment. We acknowledge support from the Natural Science Foundation of China (Nos. 20932004, 21072093), the National Basic Research Program of China (nos. 2007CB925103, 2011CB808600), the Doctoral Fund of Ministry of Education of China (20090091110017), and the fundamental research funds for the central universities (Nos. 1103020505, 1107020526). We also acknowledge Dr. Shouyun Yu for discussions about the mechanism.

Supporting Information Available. Crystallographic data, experimental procedures, and spectroscopic data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.